
AP Chemistry Daily Videos 5.5 Collision Model

Video #1

- 1. Why don't all collisions produce a reaction? State three factors that need to be considered.
- 2. Explain what the Maxwell-Boltzmann curve communicates. Note, Ea= Activation Energy.

The activation energy for a reaction is dependent on the temperature.

- 3. Why do all reactions (exothermic or endothermic) require energy to get started (activation energy)? Consider what chemical bonds must be broken for the reaction to proceed.
- Pause the video at 1:26 and attempt the problem, then evaluate how you did and identify any errors.

Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?

A thigher temperatures, reactions have a lower activation energy.

B At higher temperatures, reactions have a higher activation energy.

C At higher temperatures, every collision results in the formation of product.

D At higher temperatures, high-energy collisions happen more frequently.

5. Pause the video at 2:37 and attempt the problem, then evaluate how you did and identify any errors.

$$NO(g) + NO_3(g) \rightarrow 2 \ NO_2(g)$$
 rate = $k[NO][NO_3]$
The reaction represented above occurs in a single step that involves the collision between a particle of NO and a particle of NO₃. A scientist correctly calculates the rate of collisions between NO and NO₃ that have sufficient energy to overcome the activation energy. The observed reaction rate is only a small fraction of the calculated collision rate. Which of the following best explains the discrepancy?

The energy of collisions between two reactant particles is frequently absorbed by collision with a third particle.

The two reactant particles must collide with a particular orientation

6. Pause the video at 3:23 and attempt the problem, then evaluate how you did and identify any errors.

$3S_8 + 8OH^- \rightarrow 8S_3^- + 4HOOH$

In an experiment, a student studies the kinetics of the reaction represented above and obtains the data shown in the following table.

- e. Use the data in the table to do the following.
 - i. Determine the order of the reaction with respect to S₈. Justify your answer.
 - ii. Determine the value of [OH] that was used in trial 3, considering that the reaction is first order with respect to OH. Justify your answer.

Experiment	Initial [S ₈] (M)	Initial [OH ⁻] (M)	Initial Reaction Rate (M/s)
Trial 1	0.100	0.0100	0.699
Trial 2	0.300	0.0100	2.10
Trial 3	0.300	?	4.19

The next day the student conducts trial 4 using the same concentrations of S_8 and OH^- as in trial 1, but the reaction occurs at a much slower rate than the reaction in trial 1. The student observes that the temperature in the lab is lower than it was the day before.

f. Using particle-level reasoning, provide TWO explanations that help to account for the fact that the reaction rate is slower in trial 4.

7. Pause the video at 5:52 and attempt the problem, then evaluate how you did and identify any errors.

Which of the following statements best explains why an increase in temperature of 5-10 degrees Celsius can substantially increase the rate of a chemical reaction?

- A The activation energy for the reaction is lowered.
- B The number of effective collisions between reactant particles is increased.
- C The rate of the reverse reaction is increased.
- \bigcirc **D** $\triangle H$ for the reaction is lowered.
- **E**) $\triangle G$ for the reaction becomes more positive.