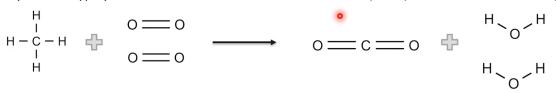
AP Chemistry Daily Videos: 6.7 Bond Enthalpies

Daily Video #1

- 1. Give a brief explanation of the difference between endothermic and exothermic processes in regards to bonds and energy. (She has a really good analogy for the difference, write them down if it helps you!)
- 2. What is bond energy? When is it negative vs. positive?
- 3. What is different about the H-H bond energy when they are broken vs. formed? What is the same?
- 4. When you look at the average bond energy chart, what happens as you move from C-C to C=C to C≡C bonds?
- 5. What is ΔH_{rxn} ? Give the equation for calculating ΔH and label it in regards to signs.
- 6. Looking at this data, first calculate ΔH , thinking carefully about if bonds are broken/formed and how many bonds you have. After you have calculated, determine the best graph and sketch it below. Is it endo or exothermic? How do you know?

 $H_2(g)+Cl_2(g)\rightarrow 2HCl(g)$


Bond	Bond Energy (kJ/mol)	
H-H	430	
Cl-Cl	240	
H-Cl	430	

7. Big takeaways?

AP Chemistry Daily Videos: 6.7 Bond Enthalpies

Daily Video #2

1. Given $CH_4 + 2 O_2 \square CO_2 + 2 H_2O$ and the general Lewis Structures below, determine what type of bonds and how many of each type you have, if the bonds are broken or formed (+ or -) and calculate the enthalpy of the reaction.

Bond	Bond Energy, kJ/mol
H – C	414
O = O	498
C = O (in CO_2)	799
O – H	464

2. Pause the video at 3:42, attempt the problem, then evaluate how you did and identify any errors. Hint!! Draw the Lewis Structures of your reactants and products for yourself first!

-			
	$2 H_2O_2(aq) \rightarrow 2 H_2O(\ell) + O_2(g)$	$\Delta H^{\circ} = -196 \text{ kJ/mol}_{rxn}$	

The decomposition of $H_2O_2(aq)$ is represented by the equation above.

Assume that the bond enthalpies of the oxygen hydrogen bonds in H_2O are not significantly different from those in H_2O_2 . Based on the value of ΔH° of the reaction, which of the following could be the bond enthalpies (in kJ/mol) for the bonds broken and formed in the reaction?

A)	O—O In H ₂ O ₂	O=O In O ₂	0—Н	
	300	500	500	
B)	O—O In H ₂ O ₂	O=O In O ₂	О—Н	
	150	500	500	
C)	O—O In H ₂ O ₂	O=O In O ₂	О—Н	
	500	300	150	
	0-0	O=O	0—Н	
D)	In H ₂ O ₂	In O ₂		Pause the video and try this problem on
	250	300	150	your own first, without a calculator! Image source: Topic Question 6.7; taken from: AP Classroom