AP Chemistry Daily Videos

7.4 Calculating the Equilibrium Constant

Video \#1

1. Describe what K is in your own way using the term ratio.
2. Under what conditions does K change?
3. How did you do with your calculations in example problem \#1?
4. There is an error in example 2. What is it?

A graph of concentration versus time for the
reaction $\mathrm{A}+\mathrm{B} \leftrightarrow 2 \mathrm{C}$ at 285 K is depicted at right.
A) Write the equilibrium constant expression, K_{c}, for the reaction.

$$
K_{\mathrm{c}}=\frac{[\mathrm{C}]^{2}}{[\mathrm{~A}][\mathrm{B}]}
$$

B) Calculate the value of the equilibrium constant, K_{c}, at 295 K .

$$
K_{\mathrm{c}}=\frac{(0.4)^{2}}{(0.2)(0.3)}
$$

$$
2 \mathrm{CO}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s})
$$ answer is given. Evaluate how you did and identify any errors.

The reaction above takes place at 300 K and is allowed to reach equilibrium. The equilibrium concentrations of CO_{2} and CO are 2.50 M and 0.350 M , respectively.
a) Write the equilibrium constant expression, $K_{\text {e }}$, for the reaction.
b) Calculate the value of K_{e} at 300 K .
c) In a separate trial also conducted at 300 K , the equilibrium concentration of CO_{2} is 1.25 M . Which of the following best approximates the equilibrium concentration of $\mathrm{CO}(g)$, and why?
I. $[C O]_{\mathrm{eq}}=0.175 \mathrm{M}$, because the concentration of CO_{2} was decreased by half, so $[\mathrm{CO}]_{\text {eq }}$ must also decrease by half.
II. $[C O]_{\text {eq }}=0.525 \mathrm{M}$, because the concentration of CO_{2} was decreased by half, so $[\mathrm{CO}]_{\text {eq }}$ must increase by half.
III. $[C O]_{\text {eq }}=0.248 \mathrm{M}$, because the ratio of $\left[\mathrm{CO}_{2}\right]:[\mathrm{CO}]^{2}$ must remain constant.
IV. $[\mathrm{CO}]_{\text {eq }}=0.061 \mathrm{M}$, because the ratio of $\left[\mathrm{CO}_{2}\right]:[\mathrm{CO}]$ must remain constant.
6. What is the unit of K? Explain.
7. Evaluate your work in example problem \#4?
8. Summarize key points for calculating K.
a.
b.
c.
d.

