AP Chemistry Daily Videos

7.4 Calculating the Equilibrium Constant

Video #1

- 1. Describe what K is in your own way using the term ratio.
- 2. Under what conditions does K change?
- 3. How did you do with your calculations in example problem #1?

4. There is an error in example 2. What is it?

5. Try following the problem before the explanation and answer is given. Evaluate how you did and identify any errors.

$$2CO(g) \leftarrow \rightarrow CO_2(g) + C(s)$$

Time, seconds

The reaction above takes place at 300 K and is allowed to reach equilibrium. The equilibrium concentrations of CO2 and CO are 2.50 M and 0.350 M, respectively.

- a) Write the equilibrium constant expression, Kc, for the reaction.
- b) Calculate the value of K_c at 300 K.
- c) In a separate trial also conducted at 300 K, the equilibrium concentration of CO₂ is 1.25 M. Which of the following best approximates the equilibrium concentration of CO(g), and why?
- I. [CO]_{eq} = 0.175 M, because the concentration of CO₂ was decreased by half, so [CO]_{eq} must also decrease by half.
- II. $[CO]_{eq} = 0.525 \text{ M}$, because the concentration of CO_2 was decreased by half, so [CO]_{eq} must increase by half.
- III. [CO]_{eq} = 0.248 M, because the ratio of [CO₂]: [CO]² must remain constant.
- IV. $[CO]_{eq} = 0.061$ M, because the ratio of $[CO_2]$: [CO] must remain constant.

6. What is the unit of K? Explain.
7. Evaluate your work in example problem #4?
8. Summarize key points for calculating K. a.
b.
c.
d.