AP Chemistry Daily Videos
 7.6 Properties of the Equilibrium Constant

Video \#1

1. Write K value for the forward and reverse direction of
 the following reaction:
2. If K in the above reaction equals 3 , what is $K_{\text {rev }}$?
3. Write a generic example, not used in the video, of how you'd calculate an overall K from a series of reactions.
4. What rule would you state happens to K as the coefficient changes, based on the example:

$$
\begin{aligned}
& \text { Suppose }[\mathrm{B}]=5 \text { and }[\mathrm{A}]=1 . \\
& \begin{array}{ll}
\mathrm{A} \rightarrow \mathrm{~B} & K_{1}=\frac{[\mathrm{B}]}{[\mathrm{A}]}
\end{array} K_{1}=\frac{5}{1}=5 \\
& 2 \mathrm{~A} \rightarrow 2 \mathrm{~B}
\end{aligned} \quad K_{2}=\frac{[\mathrm{B}]^{2}}{[\mathrm{~A}]^{2}} \quad K_{2}=\frac{5^{2}}{1^{2}}=25 .
$$

5. How is Q different than K ? Which one is used if you are not at equilibrium?
6. Try to complete this problem before the answer is given. Evaluate how you did and identify

$$
\begin{array}{ll}
2 \mathrm{~S}(s)+2 \mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{SO}_{2}(g) & K_{1}=2 \times 10^{105} \\
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{SO}_{3}(g) & K_{2}=7 \times 10^{24}
\end{array}
$$

$$
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad K_{3}=?
$$

a) 1×10^{130}
b) 3×10^{80}
c) 1×10^{65}
d) 2×10^{40}
e) 7×10^{24}
7. Try to complete this

Considering the reactions below: problem before the Reaction 1: $\mathrm{NO}(g)+1 / 2 \mathrm{Br}_{2}(g) \leftrightarrow \rightarrow \mathrm{NOBr}(g)$

```
K}=\mp@code{[NOBr]
\(K_{2}=\frac{[\mathrm{N} 2]\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2}}\)
```

answer is given. Evaluate Reaction $2: 2 \mathrm{NO}(g) \leftrightarrow_{\rightarrow \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)}$ how you did and identify any errors you made. Which of the following expressions would allow us to calculate the equilibrium constant, K, for the following overall reaction?

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{Br}_{2}(g) \leftrightarrow 2 \mathrm{NOBr}(g)
$$

A) $2 K_{1}+\frac{1}{K_{2}}$
B) $K_{1}{ }^{2}+\frac{1}{K_{2}}$
C) $2 K_{1} \times \frac{1}{K_{2}}$
D) $\mathrm{K}_{1}{ }^{2} \times \frac{1}{\mathrm{~K}_{2}}$

8. Summarize the 4 key takeaways.

a.
b.
c.
d.

