AP Chemistry Daily Videos

8.1 Introduction to Acids and Bases

<u>Video #1</u>

- 1. What does Kw represent? At what temperature is it equal to 1×10^{-4} ?
- 2. Complete the following table:

3. As pH increases acidity _____

4. Did your answers match the instructor's?

(a) Calculate the pOH of a solution with $[H_30^+] = 6.2 \times 10^{-8} M$ (b) Is this solution acidic or basic? Justify your answer.

Video #2

1. Estimate the pH if the [H+]= 5x10⁻⁸ M

(II) 1:36

- 2. If Kw increases as temperature increases, more ______ is formed. Based on this statement, deduce if the dissociation of water is endothermic or exothermic?
- Regardless of temperature, [H+] and [OH-] are always ______ in pure water or neutral solutions. For solutions that aren't neutral, you can find the concentrations of H+ and OH- by using the formula Kw=[H+][OH-].
- 4. Neutral pH doesn't always equal 7. Under what condition does water have a neutral pH of 7?
- pH and pOH are always _____ in pure water. However, pH + pOH doesn't always equal 14. Under what conditions does pH+pOH=14?
- 6. How does pKa values relate to Ka values?

	Acids ←			Acids
pKa	-4	-2	8	14
Ka	1×10 ⁴	1×10 ²	1×10 ⁻⁸	1×10 ⁻¹⁴

7. Complete the table by adding the words strong and weak.

8. Evaluate your work on the following (a) The hydronium ion concentration of a solution at 50°C is 6.2 ×10⁻⁸ M. Calculate the hydroxide ion concentration of the solution at this temperature. $pK_w = 13.262$ at 50°C.

(b) Is this solution acidic or basic? Justify your answer.

9. As temperature increases, the pH of pure water _____.

10. What is the best way to determine if a solution is acidic or basic?

11. True or False?

Statement	True/False? If False, rewrite the statement to make it true.
pH=pOH for all neutral solutions at all temperatures	
[H+]=[OH-] for all neutral solutions at all temperatures	
Kw = Ka × Kb at all temperatures	
pKa + pKb = 14 at all temperatures	
Kw=1.0x10 ⁻¹⁴ at all temperatures	
pH+pOH=14 at all temperatures	

Check: The first three statements are true, the last three are false. They are only true at $25^{\circ}C$.

12. Let's work this problem another way to repeat what	Calculate the pH of pure water at 40 °C.
was stated above:	$2H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$
Because this problem is at $40^{\circ}C$, Kw=2.92×10 ⁻¹⁴	In pure water: $[H_3O^+] = [OH^-]$
2.92×10 ⁻¹⁴ =[H+][OH-]=[OH-] ²	$2.92 \times 10^{-14} = [H_30^+][0H^-] = \ [H_30^+]^2$
	$[H_30^+] = \sqrt[2]{2.92 \times 10^{-14}} = 1.71 \times 10^{-7} M$

pH = 6.767

[OH-]=1.71×10⁻⁷M

This makes sense because we see that the concentrations of

H+ and OH- are always equal in pure water.

Since the concentrations are equal, pH must equal pOH because they are both -log of their ion's concentration.

pOH=6.767

Don't make the mistake of thinking pOH=14-pH, this can only be used at $25^{\circ}C$. You could use pOH=x-6.767, where x=-logKw=-log 2.92x10⁻¹⁴=13.5346. At 40°C, pOH=13.5346-pH = 13.5346-6.767= 6.768

pH+pOH=13.5346