AP Chemistry Daily Videos

8.9 Henderson-Hasselbalch Equation

Video #1

1. Identify the following in the reaction below: weak acid and conjugate base.

 $HA \leftrightarrow H^{+} + A^{-}$

- 2. What is the purpose of using the Henderson-Hasselbalch Equation?
- 3. Complete the table:

•	$pH = pK_a + log\frac{[A^-]}{[HA]}$				
	Concentrations	Is Log O, neg, or positive?	What is the relationship of pH to pKa?		
	[HA]=[A-]				
	[A-]>[HA]				
	[A-]<[HA]				

4. Evaluate your work

The table to the right shows the values of K_a for four weak acids. Which of the following pairs of chemical species, when combined in equimolar amounts, results in a buffer with a pH closest to 7.5?

(A)	HNO ₂ and OH

Acid	Structure	K _a
HNO ₂	H _O , N _™ o:	4.0×10 ⁻⁴
HC ₃ H ₅ O ₂	H C CH ₂ CH ₃	1.3×10 ⁻⁵
HCIO	Н СП	3.0×10 ⁻⁸
HOC ₆ H ₅	H	1.6×10 ⁻¹⁰

5. Evaluate your work

Answer the following questions that relate to the chemistry of halogen oxoacids.

- (c) A 1.2 *M* NaOCl solution is prepared by dissolving solid NaOCl in distilled water at 298 K. The hydrolysis reaction OCl⁻(*aq*) + H₂O(*l*) ⇄ HOCl(*aq*) + OH⁻(*aq*) occurs.
 - Write the equilibrium-constant expression for the hydrolysis reaction that occurs between OCl⁻(aq) and H₂O(I).
 - (ii) Calculate the value of the equilibrium constant at 298 K for the hydrolysis
 - (iii) Calculate the value of [OH-] in the 1.2 M NaOCI solution at 298 K.
- (d) A buffer solution is prepared by dissolving some solid NaOCI in a solution of HOCI at 298 K. The pH of the buffer solution is determined to be 6.48.
 - (i) Calculate the value of $[H_3O^+]$ in the buffer solution.
 - (ii) Indicate which of HOCl(aq) or OCl⁻(aq) is present at the higher concentration in the buffer solution. Support your answer with a calculation.

Acid	K _a at 298 K
HOCI	2.9 × 10 ⁻⁸
HOBr	2.4×10^{-9}