AP Chemistry Daily Videos

9.3 Gibbs Free Energy and Thermodynamic Favorability

Video #1

- 1. What is Gibbs free energy?
- 2. What does ΔG° represent?
- 3. What values of ΔG° indicate a thermodynamically favorable process?
- 4. What is the equation used to calculate ΔG° for a reaction?
- 5. Pause the video @ 3:55 and try the problem on your own. Then evaluate your work and identify any errors you may have made.

$$CaSO_4 \cdot 2H_2O(s) \rightleftarrows CaSO_4(s) + 2H_2O(g)$$

The hydrate $CaSO_4 \cdot 2H_2O(s)$ can be heated to form the anhydrous salt $CaSO_4(s)$, as shown by the reaction represented above. Using the data in the table below, calculate the value of ΔG° , in kJ/mol_{rxn}, for the reaction at 298 K.

Substance	ΔG° _f at 298 K (kJ/mol) -1795.70	
CaSO ₄ · 2H ₂ O(s)		
CaSO ₄ (s)	-1320.30	
$H_2O(g)$	-228.59	

6. What are the takeaways?

Video #2

- 1. What is the equation used to calculate the Gibbs free energy based on both entropy and enthalpy?
- 2. Complete the table with the temperature conditions necessary for a process to be thermodynamically favorable.

ΔH°	Δ <i>S</i> °	Symbols	ΔG°< 0, favored at:
< 0	> 0	<>	
> 0	< 0	><	
> 0	> 0	>>	
< 0	< 0	<<	

3. Under which circumstances is a calculation for ΔG° necessary to determine favorability?

4. Pause the video @ 4:55 and try the problem on your own. Then evaluate your work and identify any errors you may have made.

$$3Ag(s) + 4HNO_3(aq) \rightarrow 3AgNO_3(aq) + NO(g) + 2H_2O(I)$$

A student investigates the reaction between Ag(s) and $HNO_3(aq)$ represented by the equation above.

- a) Predict the sign of the entropy change, ΔS° , for the reaction. Justify your answer.
- b) Use the information in the table below to calculate the value of ΔH_{rxn}° , the standard enthalpy change for the reaction, in kJ/mol_{rxn}.
- c) Based on your answers to parts (a) and (b), is the reaction more likely to be thermodynamically favorable at 25°C or at 95°C? Justify your answer.
- d) The student runs the reaction using a 3:4 mole ratio of Ag(s) to HNO₃(aq). Suggest a method the student could use to isolate solid AgNO₃ from the other products of the reaction.

Substance	HNO ₃ (aq)	AgNO ₃ (aq)	NO(g)	$H_2O(l)$
Standard Heat of Formation, ΔH_f° (kJ/mol)	-207	-101	90.	-286

5. What are the takeaways?