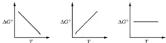
AP Chemistry Daily Videos

9.5 Free Energy and Equilibrium

Video #1

1. Relate ΔG° and K by completing the following table: <u>Khan Academy link</u>

Sign of ∆G° @ equilibrium	The sign of ΔG° indicates the reaction is spontaneous (thermodynamically favorable) or not spontaneous (not thermodynamically favorable)?	Product or Reactants Favored? Note, if the reaction is a go and favorable then what would you have more of, products or reactants?	Describe K
ΔG° is negative			
ΔG° is positive			
∆G°=zero			


2. Try the problem on your own. Then evaluate your work and identify any errors you may have made. Use principles of thermodynamics to answer the following questions. a. The gas N_2O_4 decomposes to form the gas NO_2 , according to the equation below.

 \rightarrow N + N

i. Predict the sign of ΔH° for the reaction. Justify your answer.

ii. Predict the sign of ΔS° for the reaction. Justify your answer.

b. One of the diagrams below best represents the relationship between ΔG° and temperature for the reaction given in part (a). Assume that ΔH° and ΔS° are independent of temperature.

Draw a circle around the correct graph. Explain why you chose that graph in terms of the relationship $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$.

c. A reaction mixture of N₂O₄ and NO₂ is at equilibrium. Heat is added to the mixture while it is maintained at constant pressure.

i. Explain why the concentration of N_2O_4 decreases.

ii. The value of K_{eq} at 25°C is 5.0 × 10⁻³. Will the value of K_{eq} at 100°C be greater than, less than, or equal to this value?

d. Using the value of K_{eq} at 25°C given in part (c)(ii), predict whether the value of ΔH° is expected to be greater than, less than, or equal to the value of $T\Delta S^{\circ}$. Explain.