AP Chemistry Daily Videos

9.9 Cell Potential Under Nonstandard Conditions

<u>Video #1</u>

1. What are standard conditions? Does $\Delta G = \Delta G^{\circ}$ at standard conditions?

2. What is the difference between E°_{cell} and E_{cell} ?

3. If you have the following redox reaction: $Cu^{2+}_{(aq)} + Zn_{(s)} \rightarrow Cu_{(s)} + Zn^{2+}_{(aq)}$ in a 1.0 M ZnSO₄ and 1.0M CuSO₄ solution (used in standard conditions). Calculate Q.

Answer check: You should have written Q=[Zn²⁺]/[Cu²⁺] because solids are left out. According to our concentrations Q=1. Q will always be equal to 1 in standard conditions.

4. There are 2 ways of knowing which way a reaction will proceed to reach equilibrium: A) compare Q to K B) the sign of ΔG . If ΔG =neg and Q<K then the reaction proceeds towards the products. What happens to Q and ΔG as the reaction proceeds and reactants turn into products? See <u>Khan Academy Link</u> for detailed answer.

Answer check: As product increases and reactant decreases $Q\uparrow$. There's a formula that relates Qto ΔG . Based on this formula, as $Q\uparrow$, $\Delta G\uparrow$, until the reaction reaches equilibrium. At equilibrium: Q=K and ΔG gets larger until it equals 0. When $\Delta G=0$ neither reactants or products are favored.

5. Note: The reaction $\Delta G = \Delta G^{\circ} + RT \ln Q$ at equilibrium becomes $0 = \Delta G^{\circ} + RT \ln K$ or $\Delta G^{\circ} = -RT \ln K$. Make sure you pick the correct equation depending on if you are at equilibrium or not.

6. © 0:47 Does cell potential change as concentration or pressures of aq and gases change?

Condition of Battery	∆G (-,+,0?)	E _{cell} (-,+,0?)	Q related to K?	At equilibrium?
New		+High	Q <k< td=""><td></td></k<>	
Used (Reactants have decreased concentration as they turned into product; Product concentration increased)				
Dead				Yes

7. Complete the following table to relate these concepts to a battery.

- 8. Make a statement relating how E_{cell} changes as Q approaches K, until Q=K at equilibrium. Hint, E_{cell} is measured in Volts, meaning how much potential energy a reaction has.
- Try the problem on your own. Then evaluate your work and identify any errors you may have made.

- 10. @ 4:37 What advice did your instructor give you?
- 11. How did you do on the two multiple choice questions?
- Try the problem on your own.
 Then evaluate your work and identify any errors you may have made.

A nonstandard cell is made using 0.50 M solutions of $Cu(NO_3)_2$ and $Sn(NO_3)_2$.

13. Summarize the main points of this video.