Honors Chem Redox Study Guide:

Section 1: Determining Oxidation Numbers

- 1. Determine the oxidation number of the underlined element in each compound or ion.
 - a. H2SO4
 - b. Na2S
 - c. CI2O7
 - d. K2Cr2O7
 - e. Fe3O4

Section 2: Identifying Redox Reactions and Oxidizing/Reducing Agents

- 1. For each reaction, identify the oxidizing agent and reducing agent.
 - a. Cu + 2AgNO₃ > 2Ag + Cu(NO₃)₂
 - b. $Zn + 2HCl \rightarrow ZnCl_2 + H_2$
 - c. 2AI + 3Br₂ → 2AIBr₃
 - d. $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Section 3: Redox Half-Reactions

- 1. Write the half-reaction for the oxidation and reduction processes in each reaction.
 - a. Cu + 2AgNO₃ → 2Ag + Cu(NO₃)₂
 - b. $Zn + 2HCI \rightarrow ZnCl_2 + H_2$
 - c. $2AI + 3Br_2 \rightarrow 2AIBr_3$

Section 4: Reduction Potential, Anode, and Cathode

- 1. Given the half-reactions and reduction potentials:
 - a. Cu2+ + 2e- → Cu E0 = +0.34 V
 - b. **Zn**²⁺ + **2e**⁻ → **Zn** E° = -0.76 V
 - c. $Ag^+ + e^- \rightarrow Ag E^0 = +0.80 V$

Determine the anode, cathode, overall cell reaction, and cell potential for a galvanic cell.