| F  | activation anarov | Energy peeded to get a re                                                                                                                                                                              |
|----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                   | structure formed during the course of a reaction<br>$f_{\text{Petertial}}^{\text{Potential}}$                                                                                                          |
| 4. | activated complex | an unstable arrangement of<br>atoms that exists momen-<br>tarily at the peak of the ac-<br>tivation-energy barrier; an<br>intermediate or transitional                                                 |
| 3. | collision theory  | For a reaction to occur,<br>the particles must collide,<br>they must collide with the<br>appropriate orientation, and<br>they must collide with suffi-<br>cient energy (called activa-<br>tion energy) |
| 2. | reaction rate     | change in concentration /<br>time                                                                                                                                                                      |
| 1. | rate              | measure of the speed of<br>any chance that occurs<br>within an interval of time                                                                                                                        |

# 5. activation energy

Energy needed to get a reaction started (space between activated complex and potential energy)



# 6. Factors that affect reaction rate

temperature, concentration, particle size, catalyst

| 7.  | Enzymes                   | Catalysts for chemical reac-<br>tions in living things                                                                                                                                                                                                                  |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.  | Inhibitor                 | A substance that slows<br>down or stops a chemical<br>reaction                                                                                                                                                                                                          |
| 9.  | Rate law                  | an expression relating the<br>rate of a reaction to the con-<br>centration of the reactants                                                                                                                                                                             |
| 10. | first order reaction      | a reaction in which the re-<br>action rate is proportional<br>to the concentration of only<br>one reactant (increase con-<br>centration by 2 increase re-<br>action rate by 2)                                                                                          |
| 11. | second order reaction     | a reaction whose rate de-<br>pends on the concentration<br>of one reactant raised to<br>the second power or on the<br>concentrations of two differ-<br>ent reactants, each raised<br>to the first power (increase<br>concentration by 2 increase<br>reaction rate by 4) |
| 12. | third order reaction      | The rate is proportional to<br>the cube of the concentra-<br>tion (increase concentration<br>by 2 increase reaction rate<br>by 8)                                                                                                                                       |
| 13. | Overall order of reaction | The sum of the powers<br>to which the concentration<br>terms are raised in the rate<br>equation                                                                                                                                                                         |

| 14.                                                            | reaction mechanism                                         | the step-by-step sequence<br>of reactions by which the<br>overall chemical change oc-<br>curs                                                                                                                                                                                                               |
|----------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.                                                            | rate-limiting (rate-determining) step                      | the slowest step in a path-<br>way                                                                                                                                                                                                                                                                          |
| 16.                                                            | chemical equilibrium                                       | In a chemical reaction, the<br>state in which the rate of the<br>forward reaction equals the<br>rate of the reverse reaction,<br>so that the relative concen-<br>trations of the reactants and<br>products do not change with<br>time.                                                                      |
| 17.                                                            | Equilibrium is affected by                                 | temperature, pressure, con-<br>centration                                                                                                                                                                                                                                                                   |
| 18.                                                            | Equation for equilibrium constant                          | K= products/reactants                                                                                                                                                                                                                                                                                       |
|                                                                |                                                            |                                                                                                                                                                                                                                                                                                             |
| 19.                                                            | K > 1                                                      | product favored                                                                                                                                                                                                                                                                                             |
| 19.<br>20.                                                     | K > 1<br>K < 1                                             | product favored<br>reactant favored                                                                                                                                                                                                                                                                         |
| 19.<br>20.<br>21.                                              | K > 1<br>K < 1<br>K = 1                                    | product favored<br>reactant favored<br>Reaction will reach equi-<br>librium as an intermedi-<br>ate mixture, meaning the<br>amounts of products and re-<br>actants will be about the<br>same.                                                                                                               |
| <ol> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> </ol> | <pre>K &gt; 1 K &lt; 1 K = 1 LeChatelier's Principle</pre> | product favored<br>reactant favored<br>Reaction will reach equi-<br>librium as an intermedi-<br>ate mixture, meaning the<br>amounts of products and re-<br>actants will be about the<br>same.<br>When a stress is applied to<br>a system at equilibrium, the<br>equilibrium shifts to relieve<br>the stress |

**Kinetics** Study online at https://quizlet.com/\_6nr4c7 decrease concentration shift to same side 24. **Exothermic** 25. Chemical Reaction in which energy is primarily given off in the form of heat 26. Endothermic (of a chemical reaction or compound) occurring or formed with absorption of heat **Increase temperature (exothermic)** shift left 27. **Decrease temperature (exothermic)** shift right 28. increase temperature (endothermic) shift right 29. shift left **Decrease temperature (endothermic)** 30. shift to side with less moles 31. increase pressure/decrease volume of gas 32. decrease pressure/increase volume side with most moles of gas 33. Addition of a catalyst decreases activation energy only (no change in equilibrium) A process that occurs with-34. spontaneous process out an overall input of energy; a process that is energetically favorable. A measure of disorder or Entropy (S) 35. randomness. Entropy increases when Gases are formed from liq-36. uids and solids:

Liquids or solutions are

formed from solids:

|     |                                | The number of gas mole-<br>cules increases;<br>the temperature rises;<br>The number of moles in-<br>creases. |
|-----|--------------------------------|--------------------------------------------------------------------------------------------------------------|
| 37. | 2nd law of thermodynamics      | Every energy transfer or transformation increases the entropy of the universe.                               |
| 38. | Enthalphy (H)                  | heat                                                                                                         |
| 39. | equation for enthalpy          | H= H (product) - H (reac-<br>tant)                                                                           |
| 40. | Gibbs free energy (G)          | A measure of the spontane-<br>ity of a process                                                               |
| 41. | Equation for Gibbs Free Energy | G = H - T S<br>(temperature)                                                                                 |
| 42. | If S + and H +                 | spontaneity at high temper-<br>ature                                                                         |
| 43. | If S - and H +                 | No spontaneity ever                                                                                          |
| 44. | If S + and H -                 | spontaneity always                                                                                           |
| 45. | If S - and H -                 | spontaneity at low tempera-<br>ture                                                                          |
| 46. | If enthalpy is zero            | the element is in standard state                                                                             |
| 47. | kinetics                       | Study of reaction rates and steps                                                                            |

Kinetics Study online at https://quizlet.com/\_6nr4c7

# 48. collision theory

#### says; crashes must be proper and sufficient



#### 49. activated complex

a transitional structure between reactants and products



# 50. activated energy

51. reaction rates

= minimal requirement for "lift off"



speed at which things happen i.e. reactants become products



#### 52. heterogeneous reactants

reactants that are in different phases



# 53. heterogeneous catalysts

catalysts that are in different phases than the reactants



### 54. enzymes

# 55. inhibitors

56. elementary steps

### biological catalysts



## prevent chemical reaction



intermediate products of chemical reactions



the slowest intermediate reaction

## 57. rate determining steps

## 58. complex reaction

#### 59. intermediates

# 60. homogeneous reaction

61. reaction order

62. rate law



#### sum of intermediate reactions



products produced before the final product



# everything is in the same phase



effect of concentration 0, 1, 2



an equation that describes speed of reaction

specific rate constant

63.

# Rate = $k[A]^m[B]^n$

K / (everything except concentration) i.e. temperature, the ideal gas constant, activation energy, catalysts according to Arrhenius's equation.



#### 64. **PE of Activated Complex**

the maximum energy point along the reaction path



65. Activation Energy for the Forward Reaction The minimum energy required to convert reactant(s) into product(s); the difference between the energies of the activated complex and the reactants()



#### 66. Heat of Reaction

the difference of Potential Energy between the Reactant(s) and Product(s).



# 67. Potential Energy of Reactants

Amount of Potential Energy stored on the reactants.



# 68. Potential Energy of Products

Amount of Potential Energy stored on the products.



69. Activation Energy for the Reverse Reaction quired to convert product(s) back into reactant(s); the difference between the energies of the

activated complex and the products()



# 70. Exothermic PE Diagram

a chemical reaction where the Potential Energy of the product(s) is lower than that of the reactant(s). The chemical equation is going

to represent energy wirtten with the poroduct(s) or substracted from the reactant(s)



# 71. Endothermic PE Diagram

a chemical reaction where the Potential Energy of the product(s) is higher than that of the reactant(s). The chemical equation is going to represent energy wirtten with the reactant(s) or substracted from the product(s)



Substance that decreases activation energy and increases reaction rate in a chemical reaction



# 73. PE Diagram reactants

72. Catalyst



a rxn called?



| 74. | Exothermic                                                                                                                       | Releases heat during the reaction and the tempera-<br>ture of the environment ris-<br>es                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 75. | Endothermic                                                                                                                      | Take in heat from the en-<br>vironment during a reaction<br>and the temperature of the<br>environment drops |
| 76. | Delta H                                                                                                                          | Change in heat, heat of re-<br>action                                                                       |
| 77. | Delta H = positive                                                                                                               | endothermic                                                                                                 |
| 78. | Delta H = negative                                                                                                               | exothermic                                                                                                  |
| 79. | endothermic                                                                                                                      | a positive change in heat                                                                                   |
| 80. | Exothermic                                                                                                                       | a negative change in heat                                                                                   |
| 81. | For an exothermic reaction is the heat on the right or left side of the arrow? and is the heat of reaction positive or negative? | right, positive                                                                                             |
| 82. | kinetics                                                                                                                         | the branch of chemistry that<br>is concerned with the rates<br>of chemical reactions                        |
| 83. | What is the formula for change in heat?                                                                                          | heat of products- heat of re-<br>actants                                                                    |
| 84. | What is the amount of energy needed to start                                                                                     | activation energy                                                                                           |

Kinetics Study online at https://quizlet.com/\_6nr4c7

## 85. catalyst

substance that speeds up the rate of a chemical reaction without being used up or changed itself

# 86. chemical reaction

the process by which one or more substances change to produce one or more different substances



A measurement of how much solute (dissolved solid) exists within a certain volume of solvent (liquid)



protein catalyst that speeds up the rate of specific biological reactions

# 88. enzyme

87. concentration



the sum of the areas of all the faces of a solid figure

Substrate



| 93. | Collision Theory                                      | states that chemical re-<br>actions can occur when<br>atoms, ions, and molecules<br>collide, with enough energy,<br>in the correct orientation |
|-----|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 94. | Temperature                                           | the kinetic energy of the<br>particles (how fast they are<br>moving) - higher temp =<br>higher speed                                           |
| 95. | How does higher temperature increase rate of reaction | Particles have more energy<br>= move faster = more fre-<br>quent successful collisions                                                         |
| 96. | Successful collision                                  | Collision with enough ener-<br>gy (activation energy), and<br>in the correct orientation for<br>a reaction to occur                            |
| 97. | Give 3 ways you can increase rate of reaction         | Increase temperature<br>Increase concentration<br>(pressure if a gas)<br>Increase surface area<br>Catalyst                                     |

| 98.  | How does increasing surface area increase rate of reaction         | Particles have more area<br>(exposed particles) to col-<br>lide with = more frequent<br>collisions       |
|------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 99.  | How does higher concentration increase rate of reaction            | more particles of reactant in<br>a given volume = more fre-<br>quent collisions                          |
| 100. | How does higher pressure (in a gas) in-<br>crease rate of reaction | Particles more compressed<br>together = more frequent<br>collisions                                      |
| 101. | How can you measure rate of reaction (2 ways)                      | Measure the rate at which a<br>reactant is used up<br>Measure the rate at which a<br>product is produced |