Molarity Practice

Name: \qquad Period: \qquad Date: \qquad
Necessary equations:
Mol = grams / molar mass; $1000 \mathrm{ml}=1 \mathrm{~L}(\mathrm{ml}=$ milliliter, L=liter); Molarity: mol of solute /Liters of solvent
Molarity is also expressed as M. therefore, $M=\mathrm{mol} / \mathrm{L}$.

1. How many moles of sodium nitrate are required to make 0.5 L of a 0.2 M solution? Answer: 0.1 mol
2. How many moles of Ammonium chloride is needed to make a 0.45 L of a 1.8 M solution? Answer: 0.81 mol .
3. Determine the volume of a $3 M$ solution made from 0.6 mole ammonium chloride. Answer: 0.2L
4. Determine the volume of a 10 M solution made from 0.25 mol potassium nitrate. Answer: 0.025 L
5. How many grams of NaOH (Sodium hydroxide) is required to make a 500 mL of 5 M solution?
Answer: 99.99 g NaOH
6. How many grams of KOH (Potassium hydroxide) is required to make 180 ml of a 0.9 M solution?
Answer: 9.09 g KOH
7. How many grams of NaOH (Sodium hydroxide) is required to make 300 ml of a 2 M solution?
Answer: 23.99 g NaOH
8. How many grams of KOH (Potassium hydroxide) is required to make 800 ml of a 0.4 M solution?
Answer: 17.96 g KOH .
9. Determine the volume of 0.55 M solution made from 35 grams of Copper (II) sulfate $\left(\mathrm{CuSO}_{4}\right)$. a) answer in liters, b) answer in milliliters.

Answer: a) 0.399 L, b) 399 ml
10. Determine the volume of 0.38 M solution made from 79 grams of potassium nitrate $\left(\mathrm{KNO}_{3}\right)$. a) answer in liters, b) answer in milliliters.
Answer: a) 2.05 L, b) 2050 ml .

