\qquad Date: \qquad (25 points total)

Category 1: specific Heat (you will have one problem in the test about the equation $q=m c \Delta T$ Practice problems for category 1: (5 points, 1 point = equation, 2 points = show work, 1 point = final answer, 1 point correct unit for the answer)

1. How much heat is absorbed by a 20.0 g granite boulder as energy from the sun causes its temperature to change from $10.0^{\circ} \mathrm{C}$ to $29.0^{\circ} \mathrm{C}$? (Specific heat capacity of granite is 0.790 $\mathrm{J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$) (Ans: 300.2 J)
2. A 15.75 g piece of iron absorbs $1,086.75$ joules of heat energy, and its temperature changes from $25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$. Calculate the specific heat capacity of iron. (Ans: 0.46 $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$)
3. To what temperature will a 50.0 g piece of glass rise if it absorbs 5275 to joules of heat and its specific heat capacity is $0.5 \mathrm{~J} / 9^{\circ} \mathrm{C}$? The initial temperature of the glass was $20.0^{\circ} \mathrm{C}$. (Ans: $231^{\circ} \mathrm{C}$)
4. A mercury sample is heated from $25^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$, absorbing 455 joules of heat. If the specific heat capacity of mercury is $0.14 \mathrm{~J} / 9^{\circ} \mathrm{C}$, then what is the mass of the mercury sample? (25 g)

Category 2: Molarity problems (you will have one problem in the test from molarity pracice worksheet)

Practice problems for category 2: (12 points; detailes shared in class)

1. How many grams of Perchloric acid $\left(\mathrm{HClO}_{4}\right)$ will be required to make a 700 ml of 3.5 M solution? (Ans: 246.13 g HClO 4)
2. How much water will be required to make a 1.5 M solution of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ with a $29 \mathrm{~g} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ sample? a) answer in liters. b) answer in milliliters. (Ans: a) $0.066 \mathrm{~L}, 66 \mathrm{ml}$)

Category 3: Equation of dissociation: (These problems are similar to the Chem quest problems 13.6 points)

Write the equation of dissociation for the following compounds.
a) HBr
b) SrI_{2}
c) HNO_{3}
d) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
e) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Category 4: Molarity of ions: If you had a 0.6 M solution, then calculate the molarity of the following ions for the compounds above. (These problems are similar to the Chem quest problems 16. 2 points)
a) Br^{-}
b) I^{-}
c) H^{+}
d) NO_{3}^{-}
e) both Al^{3+} and $\mathrm{SO}_{4}{ }^{2-}$

