Topics 1.4 – 1.6: MCQ Practice

1. A student performed a gravimetric analysis experiment to determine the percentage of Ag by mass in an alloy containing a mixture of Ag and Cu. A sample of the alloy is dissolved completely in a solution of $HNO_3(aq)$, forming the aqueous ions $Ag^+(aq)$ and $Cu^{2+}(aq)$. An excess amount of NaCl(aq) is added to this solution, causing the formation of a precipitate, AgCl(s). The student collects the precipitate by filtration, dries it, and records its mass. Data from the experiment is shown below.

Mass of Ag/Cu alloy	2.00 g
Mass of AgCl(s) precipitate	0.72 g

Based on the information in the data table, which of the following best represents the percent of Ag by mass in the alloy?

- (A) 27%
- (B) 36%
- (C) 54%
- (D) 75%
- 2. The mass percent of potassium in pure K₂SO₄ is 45 percent. A chemist analyzes an impure sample of K₂SO₄ and determines that the mass percent of potassium is 50 percent. Which of the following impurities could account for the high mass percent of potassium in the sample?
 - (A) KBr
 - (B) KI
 - (C) KCN
 - (D) KMnO₄
- 3. A mixture of LiCl and NaCl is analyzed and found to contain 5.00 percent Li by mass. Which of the following best represents the mass percent of LiCl in this mixture?
 - (A) 11.8%
 - (B) 30.5%
 - (C) 72.0%
 - (D) 81.9%

- 4. Which of the following represents the ground state electron configuration for an atom of tin (Sn)?
 - (A) [Kr] $5s^25p^2$
 - (B) [Kr] $4d^{10}5s^25p^2$
 - (C) [Kr] $5d^{10}5s^25p^2$
 - (D) [Kr] $4d^{10}5p^2$
- 5. Which of the following choices correctly identifies the number of unpaired electrons in the ground state electron configuration for an atom of that element?

	Element	Number of Unpaired Electrons
(A)	S	1
(B)	Mg	2
(C)	Co	3
(D)	Ti	4

- 6. Which of the following represents the ground state electron configuration for the Mn^{3+} ion?
 - (A) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$
 - (B) $1s^22s^22p^63s^23p^63d^24s^2$
 - (C) $1s^22s^22p^63s^23p^63d^34s^1$
 - (D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$
- 7. The binding energy is 2.37 MJ/mol for the 1*s* electrons in a helium atom. Which of the following correctly identifies the binding energy values for the 1*s* electrons of lithium (Li) and beryllium (Be) and provides the correct justification?

	Binding Energy of	Binding Energy of	
	1s Electrons in Li	1s Electrons in Be	Justification
	(MJ/mol)	(MJ/mol)	
(A)	6.26	11.5	Li atoms have a smaller nuclear charge than Be atoms.
(B)	6.26	11.5	Be atoms experience greater electron-electron repulsions than Li atoms do.
(C)	11.5	6.26	Li atoms have a smaller nuclear charge than Be atoms.
(D)	11.5	6.26	Be atoms experience greater electron-electron repulsions than Li atoms do.

- 8. The photoelectron spectra of the 1*s* electrons of two isoelectronic species, Ca²⁺ and Ar, are shown above. Which of the following correctly identifies the species associated with peak X and provides a valid justification?
 - (A) Ar, because it has completely filled energy levels
 - (B) Ar, because its radius is smaller than the radius of Ca^{2+}
 - (C) Ca^{2+} , because its nuclear mass is greater than that of Ar
 - (D) Ca^{2+} , because its nucleus has two more protons than the nucleus of Ar has

- 9. The complete photoelectron spectrum of a pure element is shown in the diagram above. According to the complete photoelectron spectrum, which of the following is the identity of the element?
 - (A) lithium (Li)
 - (B) boron (B)
 - (C) carbon (C)
 - (D) nitrogen (N)